Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Adv Neurotoxicol ; 11: 133-176, 2024.
Article En | MEDLINE | ID: mdl-38741946

The existing data demonstrate that probiotic supplementation affords protective effects against neurotoxicity of exogenous (e.g., metals, ethanol, propionic acid, aflatoxin B1, organic pollutants) and endogenous (e.g., LPS, glucose, Aß, phospho-tau, α-synuclein) agents. Although the protective mechanisms of probiotic treatments differ between various neurotoxic agents, several key mechanisms at both the intestinal and brain levels seem inherent to all of them. Specifically, probiotic-induced improvement in gut microbiota diversity and taxonomic characteristics results in modulation of gut-derived metabolite production with increased secretion of SFCA. Moreover, modulation of gut microbiota results in inhibition of intestinal absorption of neurotoxic agents and their deposition in brain. Probiotics also maintain gut wall integrity and inhibit intestinal inflammation, thus reducing systemic levels of LPS. Centrally, probiotics ameliorate neurotoxin-induced neuroinflammation by decreasing LPS-induced TLR4/MyD88/NF-κB signaling and prevention of microglia activation. Neuroprotective mechanisms of probiotics also include inhibition of apoptosis and oxidative stress, at least partially by up-regulation of SIRT1 signaling. Moreover, probiotics reduce inhibitory effect of neurotoxic agents on BDNF expression, on neurogenesis, and on synaptic function. They can also reverse altered neurotransmitter metabolism and exert an antiamyloidogenic effect. The latter may be due to up-regulation of ADAM10 activity and down-regulation of presenilin 1 expression. Therefore, in view of the multiple mechanisms invoked for the neuroprotective effect of probiotics, as well as their high tolerance and safety, the use of probiotics should be considered as a therapeutic strategy for ameliorating adverse brain effects of various endogenous and exogenous agents.

2.
Curr Res Toxicol ; 6: 100170, 2024.
Article En | MEDLINE | ID: mdl-38737010

The objective of the present narrative review was to synthesize existing clinical and epidemiological findings linking manganese (Mn) exposure biomarkers to autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), and to discuss key pathophysiological mechanisms of neurodevelopmental disorders that may be affected by this metal. Existing epidemiological data demonstrated both direct and inverse association between Mn body burden and ASD, or lack of any relationship. In contrast, the majority of studies revealed significantly higher Mn levels in subjects with ADHD, as well as direct relationship between Mn body burden with hyperactivity and inattention scores in children, although several studies reported contradictory results. Existing laboratory studies demonstrated that impaired attention and hyperactivity in animals following Mn exposure was associated with dopaminergic dysfunction and neuroinflammation. Despite lack of direct evidence on Mn-induced neurobiological alterations in patients with ASD and ADHD, a plethora of studies demonstrated that neurotoxic effects of Mn overexposure may interfere with key mechanisms of pathogenesis inherent to these neurodevelopmental disorders. Specifically, Mn overload was shown to impair not only dopaminergic neurotransmission, but also affect metabolism of glutamine/glutamate, GABA, serotonin, noradrenaline, thus affecting neuronal signaling. In turn, neurotoxic effects of Mn may be associated with its ability to induce oxidative stress, apoptosis, and neuroinflammation, and/or impair neurogenesis. Nonetheless, additional detailed studies are required to evaluate the association between environmental Mn exposure and/or Mn body burden and neurodevelopmental disorders at a wide range of concentrations to estimate the potential dose-dependent effects, as well as environmental and genetic factors affecting this association.

3.
Food Chem Toxicol ; 188: 114685, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663763

The objective of the present review is to discuss epidemiological evidence demonstrating the association between toxic metal (Cd, Pb, Hg, As, Sn, Ti, Tl) exposure and retinal pathology, along with the potential underlying molecular mechanisms. Epidemiological studies demonstrate that Cd, and to a lesser extent Pb exposure, are associated with age-related macular degeneration (AMD), while the existing evidence on the levels of these metals in patients with diabetic retinopathy is scarce. Epidemiological data on the association between other toxic metals and metalloids including mercury (Hg) and arsenic (As), are limited. Clinical reports and laboratory in vivo studies have shown structural alterations in different layers of retina following metal exposure. Examination of retina samples demonstrate that toxic metals can accumulate in the retina, and the rate of accumulation appears to increase with age. Experimental studies in vivo and in vitro studies in APRE-19 and D407 cells demonstrate that toxic metal exposure may cause retinal damage through oxidative stress, apoptosis, DNA damage, mitochondrial dysfunction, endoplasmic reticulum stress, impaired retinogenesis, and retinal inflammation. However, further epidemiological as well as laboratory studies are required for understanding the underlying molecular mechanisms and identifying of the potential therapeutic targets and estimation of the dose-response effects.


Metals, Heavy , Retina , Humans , Retina/drug effects , Retina/pathology , Retina/metabolism , Metals, Heavy/toxicity , Animals , Oxidative Stress/drug effects , Macular Degeneration/chemically induced
4.
Int J Mol Med ; 53(1)2024 Jan.
Article En | MEDLINE | ID: mdl-38063255

The objective of the present review was to summarize the molecular mechanisms associated with the effects of the vitamins A, C, E and K, and group B vitamins on bone and their potential roles in the development of osteoporosis. Epidemiological findings have demonstrated an association between vitamin deficiency and a higher risk of developing osteoporosis; vitamins are positively related to bone health upon their intake at the physiological range. Excessive vitamin intake can also adversely affect bone formation, as clearly demonstrated for vitamin A. Vitamins E (tocopherols and tocotrienols), K2 (menaquinones 4 and 7) and C have also been shown to promote osteoblast development through bone morphogenetic protein (BMP)/Smad and Wnt/ß­catenin signaling, as well as the TGFß/Smad pathway (α­tocopherol). Vitamin A metabolite (all­trans retinoic acid) exerts both inhibitory and stimulatory effects on BMP­ and Wnt/ß­catenin­mediated osteogenesis at the nanomolar and micromolar range, respectively. Certain vitamins significantly reduce receptor activator of nuclear factor kappa­B ligand (RANKL) production and RANKL/RANK signaling, while increasing the level of osteoprotegerin (OPG), thus reducing the RANKL/OPG ratio and exerting anti­osteoclastogenic effects. Ascorbic acid can both promote and inhibit RANKL signaling, being essential for osteoclastogenesis. Vitamin K2 has also been shown to prevent vascular calcification by activating matrix Gla protein through its carboxylation. Therefore, the maintenance of a physiological intake of vitamins should be considered as a nutritional strategy for the prevention of osteoporosis.


Osteoporosis , Vitamins , Humans , Vitamins/pharmacology , Cholecalciferol/pharmacology , beta Catenin/metabolism , Vitamin A , Bone Density , Osteoporosis/metabolism , Vitamin K , Bone Morphogenetic Proteins , Wnt Signaling Pathway
5.
Environ Int ; 180: 108229, 2023 10.
Article En | MEDLINE | ID: mdl-37797477

The causes of nigrostriatal cell death in idiopathic Parkinson's disease are unknown, but exposure to toxic chemicals may play some role. We followed up here on suggestions that bacterial secondary metabolites might be selectively cytotoxic to dopaminergic neurons. Extracts from Streptomyces venezuelae were found to kill human dopaminergic neurons (LUHMES cells). Utilizing this model system as a bioassay, we identified a bacterial metabolite known as aerugine (C10H11NO2S; 2-[4-(hydroxymethyl)-4,5-dihydro-1,3-thiazol-2-yl]phenol) and confirmed this finding by chemical re-synthesis. This 2-hydroxyphenyl-thiazoline compound was previously shown to be a product of a wide-spread biosynthetic cluster also found in the human microbiome and in several pathogens. Aerugine triggered half-maximal dopaminergic neurotoxicity at 3-4 µM. It was less toxic for other neurons (10-20 µM), and non-toxic (at <100 µM) for common human cell lines. Neurotoxicity was completely prevented by several iron chelators, by distinct anti-oxidants and by a caspase inhibitor. In the Caenorhabditis elegans model organism, general survival was not affected by aerugine concentrations up to 100 µM. When transgenic worms, expressing green fluorescent protein only in their dopamine neurons, were exposed to aerugine, specific neurodegeneration was observed. The toxicant also exerted functional dopaminergic toxicity in nematodes as determined by the "basal slowing response" assay. Thus, our research has unveiled a bacterial metabolite with a remarkably selective toxicity toward human dopaminergic neurons in vitro and for the dopaminergic nervous system of Caenorhabditis elegans in vivo. These findings suggest that microbe-derived environmental chemicals should be further investigated for their role in the pathogenesis of Parkinson's disease.


Caenorhabditis elegans , Parkinson Disease , Animals , Humans , Caenorhabditis elegans/metabolism , Animals, Genetically Modified , Antioxidants/metabolism , Neurons
6.
Cells ; 12(17)2023 08 22.
Article En | MEDLINE | ID: mdl-37681856

Mitochondria play a crucial role in cellular respiration, ATP production, and the regulation of various cellular processes. Mitochondrial dysfunctions have been directly linked to pathophysiological conditions, making them a significant target of interest in toxicological research. In recent years, there has been a growing need to understand the intricate effects of xenobiotics on human health, necessitating the use of effective scientific research tools. Caenorhabditis elegans (C. elegans), a nonpathogenic nematode, has emerged as a powerful tool for investigating toxic mechanisms and mitochondrial dysfunction. With remarkable genetic homology to mammals, C. elegans has been used in studies to elucidate the impact of contaminants and drugs on mitochondrial function. This review focuses on the effects of several toxic metals and metalloids, drugs of abuse and pesticides on mitochondria, highlighting the utility of C. elegans as a model organism to investigate mitochondrial dysfunction induced by xenobiotics. Mitochondrial structure, function, and dynamics are discussed, emphasizing their essential role in cellular viability and the regulation of processes such as autophagy, apoptosis, and calcium homeostasis. Additionally, specific toxins and toxicants, such as arsenic, cadmium, and manganese are examined in the context of their impact on mitochondrial function and the utility of C. elegans in elucidating the underlying mechanisms. Furthermore, we demonstrate the utilization of C. elegans as an experimental model providing a promising platform for investigating the intricate relationships between xenobiotics and mitochondrial dysfunction. This knowledge could contribute to the development of strategies to mitigate the adverse effects of contaminants and drugs of abuse, ultimately enhancing our understanding of these complex processes and promoting human health.


Caenorhabditis elegans , Xenobiotics , Humans , Animals , Mitochondria , Cell Respiration , Apoptosis , Mammals
7.
Toxics ; 11(8)2023 Aug 03.
Article En | MEDLINE | ID: mdl-37624175

Metabolic syndrome (MetS) is an important public health issue that affects millions of people around the world and is growing to pandemic-like proportions. This syndrome is defined by the World Health Organization (WHO) as a pathologic condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. Moreover, the etiology of MetS is multifactorial, involving many environmental factors, including toxicant exposures. Several studies have associated MetS with heavy metals exposure, which is the focus of this review. Environmental and/or occupational exposure to heavy metals are a major risk, contributing to the development of chronic diseases. Of particular note, toxic metals such as mercury, lead, and cadmium may contribute to the development of MetS by altering oxidative stress, IL-6 signaling, apoptosis, altered lipoprotein metabolism, fluid shear stress and atherosclerosis, and other mechanisms. In this review, we discuss the known and potential roles of heavy metals in MetS etiology as well as potential targeted pathways that are associated with MetS. Furthermore, we describe how new approaches involving proteomic and transcriptome analysis, as well as bioinformatic tools, may help bring about an understanding of the involvement of heavy metals and metalloids in MetS.

8.
Biomolecules ; 12(10)2022 Sep 29.
Article En | MEDLINE | ID: mdl-36291605

Caenorhabditis elegans (C. elegans) is a nematode present worldwide. The worm shows homology to mammalian systems and expresses approximately 40% of human disease-related genes. Since Dr. Sydney Brenner first proposed C. elegans as an advantageous experimental worm-model system for genetic approaches, increasing numbers of studies using C. elegans as a tool to investigate topics in several fields of biochemistry, neuroscience, pharmacology, and toxicology have been performed. In this regard, C. elegans has been used to characterize the molecular mechanisms and affected pathways caused by metals that lead to neurotoxicity, as well as the pathophysiological interrelationship between metal exposure and ongoing neurodegenerative disorders. Several toxic metals, such as lead, cadmium, and mercury, are recognized as important environmental contaminants, and their exposure is associated with toxic effects on the human body. Essential elements that are required to maintain cellular homeostasis and normal physiological functions may also be toxic when accumulated at higher concentrations. For instance, manganese (Mn) is a trace essential element that participates in numerous biological processes, such as enzymatic activities, energy metabolism, and maintenance of cell functions. However, Mn overexposure is associated with behavioral changes in C. elegans, which are consistent with the dopaminergic system being the primary target of Mn neurotoxicity. Caenorhabditis elegans has been shown to be an important tool that allows for studies on neuron morphology using fluorescent transgenic worms. Moreover, behavioral tests may be conducted using worms, and neurotransmitter determination and related gene expression are likely to change after Mn exposure. Likewise, mutant worms may be used to study molecular mechanisms in Mn toxicity, as well as the expression of proteins responsible for the biosynthesis, transport, storage, and uptake of dopamine. Furthermore, this review highlights some advantages and limitations of using the experimental model of C. elegans and provides guidance for potential future applications of this model in studies directed toward assessing for Mn neurotoxicity and related mechanisms.


Caenorhabditis elegans Proteins , Mercury , Animals , Humans , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Manganese/toxicity , Manganese/metabolism , Dopamine/metabolism , Cadmium/toxicity , Metals/pharmacology , Mercury/pharmacology , Mammals/metabolism
9.
Neurotox Res ; 40(6): 1812-1823, 2022 Dec.
Article En | MEDLINE | ID: mdl-36306114

The toxicity of diuron herbicide and its metabolites has been extensively investigated; however, their precise toxic mechanisms have yet to be fully appreciated. In this context, we evaluated the toxic mechanism of diuron, 3,4-dichloroaniline (DCA) and 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU), using Caenorhabditis elegans (C. elegans) in the L1 larval stage. For this purpose, worms were acutely exposed to the test chemicals with a preliminary concentration range of 0.5 to 500 µM and first analyzed for lethality (%). Next, the highest concentration (500 µM) was considered for survival (%), reactive oxygen and nitrogen species (RONS), glutathione (GSH) and ATP levels, autophagy index, behavior, and dopaminergic neurodegeneration parameters. Interestingly, increased lethality (%) was found for all chemicals at the higher concentrations tested (100 and 500 µM), with significant differences at 500 µM DCA (p < 0.05). A decrease in the median survival was observed mainly for DCA. Although no changes were observed in RONS production, GSH levels were significantly increased upon diuron and DCA treatment, likely reflecting an attempt to restore the redox status. Moreover, diuron and its metabolites impaired ATP levels, suggesting an alteration in mitochondrial function. The latter may trigger autophagy as an adaptive survival mechanism, but this was not observed in C. elegans. Dopaminergic neurotoxicity was observed upon treatment with all the tested chemicals, but only diuron induced alterations in the worms' locomotor behavior. Combined, these results indicate that exposure to high concentrations of diuron and its metabolites elicit distinct adverse outcomes in C. elegans, and DCA in particular, plays an important role in the overall toxicity observed in this experimental model.


Diuron , Herbicides , Animals , Diuron/toxicity , Diuron/metabolism , Caenorhabditis elegans/metabolism , Herbicides/toxicity , Reactive Oxygen Species , Adenosine Triphosphate
10.
Article En | MEDLINE | ID: mdl-35990536

Iron (Fe) is an essential trace element required for several physiological processes. It plays important roles in mitochondrial function, synthesis, and metabolism of the neurotransmitter, as well as oxygen transport. However, excess Fe can cause toxicity. Particularly, Fe overload may result in neurotoxicity, contributing to the development and progression of neurodegenerative diseases, although the molecular mechanisms underlying Fe-induced neurodegeneration have yet to be entirely understood. Alternative (non-rodent) experimental models have been pointed as important approaches to elucidate molecular and physiological events mediating Fe-induced pathology. Among such alternative strategies, an advantageous experimental worm-model system, Caenorhabditis elegans (C. elegans), has been used to investigate Fe-induced neurotoxicity and neurodegenerative disorders. Its genome has been fully sequenced, corroborating that it shares significant homology with mammalians, and has approximately 40% of human disease-related genes. As part of this review, we discuss studies using the C. elegans model to study molecular mechanisms such as oxidative stress, mitochondrial dysfunction, disturbed homeostasis, and its potential contribution to the study of metal-induced neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD).

11.
Neurotoxicology ; 91: 349-359, 2022 07.
Article En | MEDLINE | ID: mdl-35724878

Lead (Pb) and ethanol (EtOH) are neurotoxicants that affect the dopaminergic (DAergic) system. We first sought to assess the morphology of the DAergic neurons in the Caenorhabditis elegans BY200 strain. The results demonstrated dose-dependent damage in these neurons induced by developmental Pb exposure. Secondly, transgenic worms exposed to 24 µM Pb and administered with 200 mM EtOH were evaluated in the basal slowing response (BSR). Pb induced impairment in the BSR in the wild-type strain that did not improve in response to EtOH, an effect also observed in strains that lack the DOP-1, DOP-2, and DOP-3 receptors. The animals that overexpress tyrosine hydroxylase (TH), or lack the vesicular transport (VMAT) showed a Pb-induced impairment in the BSR that seemed to improve after EtOH. Interestingly, a dramatic impairment in the BSR was observed in the Pb group in strains lacking the DOP-4 receptor, resembling the response of the TH-deficient strain, an effect that in both cases showed a non-significant reversal by EtOH. These results suggest that the facilitatory effect of EtOH on the impaired BSR observed in Pb-exposed null mutant strains may be the result of a compensatory effect in the altered DAergic synapse present in these animals.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans Proteins/genetics , Dopaminergic Neurons , Ethanol/toxicity , Lead/toxicity , Tyrosine 3-Monooxygenase
12.
Arch Toxicol ; 96(9): 2391-2417, 2022 09.
Article En | MEDLINE | ID: mdl-35727353

Ferroptosis is a recently discovered form of regulated cell death, implicated in multiple pathologies. Given that the toxicity elicited by some metals is linked to alterations in iron metabolism and induction of oxidative stress and lipid peroxidation, ferroptosis might be involved in such toxicity. Although direct evidence is insufficient, certain pioneering studies have demonstrated a crosstalk between metal toxicity and ferroptosis. Specifically, the mechanisms underlying metal-induced ferroptosis include induction of ferritinophagy, increased DMT-1 and TfR cellular iron uptake, mitochondrial dysfunction and mitochondrial reactive oxygen species (mitoROS) generation, inhibition of Xc-system and glutathione peroxidase 4 (GPX4) activity, altogether resulting in oxidative stress and lipid peroxidation. In addition, there is direct evidence of the role of ferroptosis in the toxicity of arsenic, cadmium, zinc, manganese, copper, and aluminum exposure. In contrast, findings on the impact of cobalt and nickel on ferroptosis are scant and nearly lacking altogether for mercury and especially lead. Other gaps in the field include limited studies on the role of metal speciation in ferroptosis and the critical cellular targets. Although further detailed studies are required, it seems reasonable to propose even at this early stage that ferroptosis may play a significant role in metal toxicity, and its modulation may be considered as a potential therapeutic tool for the amelioration of metal toxicity.


Ferroptosis , Antioxidants/pharmacology , Iron/metabolism , Lipid Peroxidation , Oxidative Stress , Reactive Oxygen Species/metabolism
13.
Biomolecules ; 11(12)2021 11 25.
Article En | MEDLINE | ID: mdl-34944406

BXD recombinant inbred (RI) lines represent a genetic reference population derived from a cross between C57BL/6J mice (B6) and DBA/2J mice (D2), which through meiotic recombination events possesses recombinant chromosomes containing B6 or D2 haplotype segments. The quantitative trait loci (QTLs) are the locations of segregating genetic polymorphisms and are fundamental to understanding genetic diversity in human disease susceptibility and severity. QTL mapping represents the typical approach for identifying naturally occurring polymorphisms that influence complex phenotypes. In this process, genotypic values at markers of known genomic locations are associated with phenotypic values measured in a segregating population. Indeed, BXD RI strains provide a powerful tool to study neurotoxicity induced by different substances. In this review, we describe the use of BXD RI lines to understand the underlying mechanisms of neurotoxicity in response to ethanol and cocaine, as well as metals and pesticide exposures.


Mice, Inbred Strains/genetics , Neurotoxicity Syndromes/genetics , Quantitative Trait Loci , Animals , Chromosome Mapping , Disease Models, Animal , Haplotypes , Male , Mice , Neurotoxicity Syndromes/etiology , Recombination, Genetic
14.
Biomolecules ; 11(9)2021 08 31.
Article En | MEDLINE | ID: mdl-34572505

Manganese (Mn) is an essential metal, which at high exposures causes neurotoxic effects and neurodegeneration. The neurotoxic effects of Mn are mediated by neuroinflammation, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, and other mechanisms. Recent findings have demonstrated the potential impact of Mn overexposure on gut microbiota dysbiosis, which is known to contribute to neurodegeneration via secretion of neuroactive and proinflammatory metabolites. Therefore, in this review, we discuss the existing data on the impact of Mn exposure on gut microbiota biodiversity, bacterial metabolite production, and gut wall permeability regulating systemic levels. Recent data have demonstrated that Mn exposure may affect gut microbiota biodiversity by altering the abundance of Shiegella, Ruminococcus, Dorea, Fusicatenibacter, Roseburia, Parabacteroides, Bacteroidetes, Firmicutes, Ruminococcaceae, Streptococcaceae, and other bacterial phyla. A Mn-induced increase in Bacteroidetes abundance and a reduced Firmicutes/Bacteroidetes ratio may increase lipopolysaccharide levels. Moreover, in addition to increased systemic lipopolysaccharide (LPS) levels, Mn is capable of potentiating LPS neurotoxicity. Due to the high metabolic activity of intestinal microflora, Mn-induced perturbations in gut microbiota result in a significant alteration in the gut metabolome that has the potential to at least partially mediate the biological effects of Mn overexposure. At the same time, a recent study demonstrated that healthy microbiome transplantation alleviates Mn-induced neurotoxicity, which is indicative of the significant role of gut microflora in the cascade of Mn-mediated neurotoxicity. High doses of Mn may cause enterocyte toxicity and affect gut wall integrity through disruption of tight junctions. The resulting increase in gut wall permeability further promotes increased translocation of LPS and neuroactive bacterial metabolites to the systemic blood flow, ultimately gaining access to the brain and leading to neuroinflammation and neurotransmitter imbalance. Therefore, the existing data lead us to hypothesize that gut microbiota should be considered as a potential target of Mn toxicity, although more detailed studies are required to characterize the interplay between Mn exposure and the gut, as well as its role in the pathogenesis of neurodegeneration and other diseases.


Gastrointestinal Microbiome/drug effects , Manganese/toxicity , Neurotoxins/toxicity , Animals , Humans , Immunity/drug effects , Metabolome/drug effects , Nerve Degeneration/microbiology , Nerve Degeneration/pathology
15.
Curr Opin Toxicol ; 25: 30-35, 2021 Mar.
Article En | MEDLINE | ID: mdl-33898886

Toxic and essential elements are widely distributed in the Earth's crust and individuals may be exposed to several of them. Indeed, exposure to toxic elements such as mercury (Hg) can be a potential health risk factor of health, mainly by ingestion of fish containing methylmercury (MeHg). On the other hand, essential elements such as manganese (Mn) play an important role in physiological process in human body. However, Mn overexposure may cause toxic effects. In this respect, the neurotoxic effects of MeHg and Mn on the developing brain are well recognized. Therefore, in this critical review, we address the effects of MeHg and Mn on cell signaling pathways which may contribute to molecular mechanisms involved in MeHg- and Mn-induced neurotoxicity.

16.
Crit Rev Toxicol ; 51(3): 209-216, 2021 03.
Article En | MEDLINE | ID: mdl-33905310

Mefloquine, a potent blood schizontocide, is effective against drug-resistant Plasmodium falciparum. This property, along with its unique pharmacokinetic profile, makes mefloquine a widely prescribed antimalarial drug. However, several epidemiological studies have raised concerns on the safety of mefloquine as prophylaxis for malaria. Well-documented side-effects of mefloquine include abnormal dreams, insomnia, anxiety, and depressed mood, as well as nausea and dizziness (the last two most frequent effects). The mechanisms that underlie the neurological/psychiatric complications of mefloquine are poorly understood. The aim of this study was to review the literature on the neurotoxic mechanisms of action of mefloquine to better understand its potential toxicity in the central nervous system, highlighting the mechanisms that lead to its psychiatric disorders. Experimental studies on the neurotoxic effects of mefloquine discussed herein include brain transporters of mefloquine, alteration in neurotransmitters, disruption on calcium (Ca2+) homeostasis and neuroinflammation, generation of oxidative stress response in neurons (involving glutathione, increased F2-isoprostanes, accumulation of cytosolic lipid globules), and alteration of voltage-dependent channels, as well as gap junction intercellular communications. Although several hypotheses have been proposed for the mechanisms that mediate mefloquine-induced brain damage, they are not fully understood, necessitating additional studies in the future.


Antimalarials/toxicity , Mefloquine/toxicity , Nervous System/drug effects , Central Nervous System , Humans
17.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article En | MEDLINE | ID: mdl-33925013

Understanding of the immediate mechanisms of Mn-induced neurotoxicity is rapidly evolving. We seek to provide a summary of recent findings in the field, with an emphasis to clarify existing gaps and future research directions. We provide, here, a brief review of pertinent discoveries related to Mn-induced neurotoxicity research from the last five years. Significant progress was achieved in understanding the role of Mn transporters, such as SLC39A14, SLC39A8, and SLC30A10, in the regulation of systemic and brain manganese handling. Genetic analysis identified multiple metabolic pathways that could be considered as Mn neurotoxicity targets, including oxidative stress, endoplasmic reticulum stress, apoptosis, neuroinflammation, cell signaling pathways, and interference with neurotransmitter metabolism, to name a few. Recent findings have also demonstrated the impact of Mn exposure on transcriptional regulation of these pathways. There is a significant role of autophagy as a protective mechanism against cytotoxic Mn neurotoxicity, yet also a role for Mn to induce autophagic flux itself and autophagic dysfunction under conditions of decreased Mn bioavailability. This ambivalent role may be at the crossroad of mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis. Yet very recent evidence suggests Mn can have toxic impacts below the no observed adverse effect of Mn-induced mitochondrial dysfunction. The impact of Mn exposure on supramolecular complexes SNARE and NLRP3 inflammasome greatly contributes to Mn-induced synaptic dysfunction and neuroinflammation, respectively. The aforementioned effects might be at least partially mediated by the impact of Mn on α-synuclein accumulation. In addition to Mn-induced synaptic dysfunction, impaired neurotransmission is shown to be mediated by the effects of Mn on neurotransmitter systems and their complex interplay. Although multiple novel mechanisms have been highlighted, additional studies are required to identify the critical targets of Mn-induced neurotoxicity.


Manganese Poisoning/metabolism , Animals , Cation Transport Proteins/metabolism , Humans , Manganese/toxicity , Neurodegenerative Diseases/chemically induced , Synaptic Transmission/drug effects
18.
Expert Opin Drug Metab Toxicol ; 17(5): 581-593, 2021 May.
Article En | MEDLINE | ID: mdl-33620266

INTRODUCTION: Several diseases and clinical conditions can affect enteral nutrition and adequate gastrointestinal uptake. In this respect, parenteral nutrition (PN) is necessary for the provision of deficient trace elements. However, some essential elements, such as manganese (Mn) may be toxic to children and adults when parenterally administered in excess, leading to toxic, especially neurotoxic effects. AREAS COVERED: Here, we briefly provide an overview on Mn, addressing its sources of exposure, the role of Mn in the etiology of neurodegenerative diseases, and focusing on potential mechanisms associated with Mn-induced neurotoxicity. In addition, we discuss the potential consequences of overexposure to Mn inherent to PN. EXPERT OPINION: In this critical review, we suggest that additional research is required to safely set Mn levels in PN, and that eliminating Mn as an additive should be considered by physicians and nutritionists on a case by case basis in the meantime to avoid the greater risk of neurotoxicity by its presence. There is a need to better define clinical biomarkers for Mn toxicity by PN, as well as identify new effective agents to treat Mn-neurotoxicity. Moreover, we highlight the importance of the development of new guidelines and practice safeguards to protect patients from excessive Mn exposure and neurotoxicity upon PN administration.


Manganese/adverse effects , Neurotoxicity Syndromes/etiology , Parenteral Nutrition/adverse effects , Adult , Animals , Child , Humans , Manganese/administration & dosage , Neurotoxicity Syndromes/prevention & control , Parenteral Nutrition/methods , Risk , Trace Elements/administration & dosage , Trace Elements/adverse effects
19.
Ecotoxicol Environ Saf ; 208: 111636, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-33396156

BACKGROUND: Since the first report by Perry et al. (1955), most studies affirmed the hypertensive effects of cadmium (Cd) in humans. Nonetheless, conclusions between studies remain inconsistent. OBJECTIVE: The aim of this study was to reevaluate the evidence for a potential relationship between Cd exposure and altered blood pressure and/or hypertension, focusing on studies published between January 2010 and March 2020. METHODS: We reviewed all observational studies from database searches (PubMed and SCOPUS) on Cd exposure and blood pressure or hypertension. We extracted information from studies that provided sufficient data on population characteristics, smoking status, exposure, outcomes, and design. RESULTS: Thirty-eight studies met our inclusion criteria; of those, twenty-nine were cross sectional, three case control, five cohort and one interventional study. Blood or urinary Cd levels were the most commonly used biomarkers. CONCLUSIONS: A positive association between blood Cd levels and blood pressure and/or hypertension was identified in numerous studies at different settings. Limited number of representative population-based studies of never-smokers was observed, which may have confounded our conclusions. The association between urinary Cd and blood pressure and/or hypertension remains uncertain due to conflicting results, including inverse relationships with lack of strong mechanistic support. We point to the urgent need for additional longitudinal studies to confirm our findings.


Blood Pressure , Cadmium/analysis , Environmental Exposure/analysis , Environmental Pollutants/analysis , Hypertension/epidemiology , Biomarkers/analysis , Humans , Hypertension/blood , Hypertension/urine
20.
Curr Hypertens Rev ; 17(1): 14-26, 2021.
Article En | MEDLINE | ID: mdl-33475076

Hypertension is an important public health concern that affects millions globally, leading to a large number of morbidities and fatalities. The etiology of hypertension is complex and multifactorial, and it involves environmental factors, including heavy metals. Cadmium and mercury are toxic elements commonly found in the environment, contributing to hypertension. We aimed to assess the role of cadmium and mercury-induced endothelial dysfunction in the development of hypertension. A narrative review was carried out through database searches. In this review, we discussed the critical roles of cadmium and mercury in the etiology of hypertension and provided new insights into potential mechanisms of their effect, focusing primarily on endothelial dysfunction. Although the mechanisms by which cadmium and mercury induce hypertension have yet to be completely elucidated, evidence for both implicates impaired nitric oxide signaling in their hypertensive etiology.


Hypertension , Mercury , Metals, Heavy , Cadmium/toxicity , Humans , Hypertension/chemically induced , Hypertension/diagnosis , Mercury/toxicity
...